Solve the equation cos2x-cosx=0?

1 Answer
Apr 4, 2017

x=(2n+1)pi or x=2npi+-(2pi)/3, where n is an integer

Explanation:

Using identity cos2x=2cos^2x-1, cos2x-cosx=0 can be written as

2cos^2x-cosx-1=0 and hence using quadratic formula

cosx=(-(-1)+-sqrt((-1)^2-4xx2xx(-1)))/(2xx2)

=(1+-sqrt9)/4

=(1+-3)/4

=1 or -1/2

If cosx=1, x=(2n+1)pi, where n is an integer

and if cosx=-1/2, x=2npi+-(2pi)/3, where n is an integer