Question #cf8dc Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N Apr 4, 2017 (sinx+cosx)2=sin2x+cos2x+2sinx.cosx Since, sin2x+cos2x=1 2sinx.cosx=sin2x, Therefore, (sinx+cosx)2=1+sin2x Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 1078 views around the world You can reuse this answer Creative Commons License