Simplify the following: " "a: color(white)("d")(x^2+7x+12)/(x+3) a:dx2+7x+12x+3 " "b: color(white)("d") sqrt((x^9y^4)/x^5) b:dx9y4x5 " "c: (3^(-1)a^4b^(-3))^2/(6a^2b^(-1)c^(-2))^2 c:(31a4b3)2(6a2b1c2)2 ?

3 Answers
Apr 4, 2017

Solution to a) ->x+4x+4

Explanation:

Solution to a)

Factorising takes quite a bit of practice as you need to build up a 'memory base' that you can draw on.

Given:" "(x^2+7x+12)/(x+3) x2+7x+12x+3

Consider the top bit (numerator)

Notice that 3xx4=12" and that "3+4=73×4=12 and that 3+4=7

The coefficient of x^2x2 (number in front of it) is 1
so we can write x^2+7x+12" as "(x+3)(x+4)x2+7x+12 as (x+3)(x+4)

Putting it all together we have:

(x^2+7x+12)/(x+3)" "=" "((x+3)(x+4))/((x+3))x2+7x+12x+3 = (x+3)(x+4)(x+3)

" "=" "(x+3)/(x+3)xx(x+4) = x+3x+3×(x+4)

" "=" "1" "xx(x+4) = 1 ×(x+4)

" "=" "x+4 = x+4

Apr 4, 2017

Solution to b) ->x^2y^2x2y2

Explanation:

Given:" "sqrt((x^9y^4)/x^5 x9y4x5

You are looking for squared values as these can be 'taken outside' the root. Also note that (by example) sqrt(a/b) -> sqrt(a)/sqrt(b)abab

Write as: (sqrt(cancel(x^2)xx cancel(x^2)xx x^2xx x^2xx x xxy^2xxy^2))/(sqrt(cancel(x^2)xx cancel(x^2)xx x)

=(x^2y^2cancel(sqrt(x)))/(cancel(sqrt(x)))

=x^2y^2

Apr 4, 2017

Solution to c) " "(b^8c^4)/(4a^16)

Explanation:

By example:
Note that a^(-1)=1/a"; "a^(-2)=1/a^2"; "a^(-2/3)=1/(root(3)(a^2))

Note that 1/(a^(-1))=a"; "1/a^(-2)=a^2"; "1/a^(-2/3)=root(3)(a^2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Consider the numerator:")
" "(3^(-1)a^4b^(-3))^(-2)" "->" " (1/3xxa^4xx1/b^3)^(-2)

" " = " "(a^4/(3b^3))^(-2)

" " = " "((3b^3)/a^4)^(2)

" " = " "(9b^6)/a^(12)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the denominator:")
" "(6a^2b^(-1)c^(-2))^2->(6xxa^2xx1/bxx1/c^2)^2

" "=" "((6a^2)/(bc^2))^2

" "=" "(36a^4)/(b^2c^4)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Putting it all together")

color(brown)("numerator " -:" denominator " ->" " (9b^6)/(a^12) -: (36a^4)/(b^2c^4))

" " (9b^6)/(a^12) xx (b^2c^4)/(36a^4)

" "=" "9/36xx(b^8c^4)/a^16

" "=" "(b^8c^4)/(4a^16)