Question #b7cd0

1 Answer
Feb 19, 2018

dy/dx=1/(2sqrt(x(1-x)dydx=12x(1x)

Explanation:

"Let"y=sin^-1(sqrtx)Lety=sin1(x)

dy/dx=?dydx=?

u=sqrtxu=x

u^2=xu2=x

(du)/dx=1/(2sqrtx)dudx=12x

y=sin^-1uy=sin1u

(dy)/(du)=1/sqrt(1-u^2)dydu=11u2

(dy)/(du)=1/sqrt(1-x)dydu=11x

dy/dx=dy/(du)(du)/dxdydx=dydududx

dy/dx=1/sqrt(1-x)xx1/(2sqrtx)=1/(2sqrt(x(1-x)dydx=11x×12x=12x(1x)

dy/dx=1/(2sqrt(x(1-x)dydx=12x(1x)