Solve the equation 2cos2x+1/2sin2x=sin^2x?

1 Answer
Oct 12, 2017

x=npi+pi/4 or x=npi+tan^(-1)(-2/3), where n is an integer

Explanation:

2cos2x+1/2sin2x=sin^2x can be written as

2(1-2sin^2x)+sinxcosx=sin^2x

or 5sin^2x-sinxcosx-2=0 and dividing each term by cos^2x

5tan^2x-tanx-2(1+tan^2x)=0

or 3tan^2x-tanx-2=0

i.e. (3tanx+2)(tanx-1)=0

i.e. either tanx-1=0=>tanx=1=tan(pi/4) i.e. x=npi+pi/4

or 3tanx+2=0=>tanx=-2/3 i.e. x=npi+tan^(-1)(-2/3), where n is an integer