Question #95289

2 Answers
Apr 5, 2017

Use trig identities:
#cos a + cos b = 2cos ((a + b)/2)cos ((a - b)/2)#(1)
#cos^3 a = cos x(4cos^2 x - 3)# (2)
#sin 2x = 2sin x.cos x# (3)
#sin^2 x + cos^2 x = 1# (4)
In this case, from identity (1), we get:
f(x) = cos (4x) + cos (2x) = 2cos (3x).cos x
Substitute cos 3x by identity (2)
#f(x) = (2cos^2 x)(4cos^2 x - 3)#
Replace #cos^2 x# by #(1 - sin^2 x)#
#f(x) = 2cos^2 x( 4 - 4sin^2 x - 3) = 2cos^2 x(-4sin^2 x + 1)#
From identities (3) and (4), we get:
#f(x) = - 8sin^2 x.cos^2 x + 2cos^2 x = - 2sin^2 (2x) + 2 - 2sin^2 x#. Proved.

Apr 5, 2017

#LHS=cos4x+cos2x#

#=1-2sin^2\x+1-2sin^2x#

#=2-2sin^2\x-2sin^2x=RHS#

[ using formula #cos2theta=1-2sin^2theta]#