Question #79b74

1 Answer
Apr 5, 2017

2cos2x-4cosx=12cos2x4cosx=1

=>2(2cos^2x-1)-4cosx=12(2cos2x1)4cosx=1

=>4cos^2x-2-4cosx=14cos2x24cosx=1

=>(2cosx)^2-2*cosx*1+1^2=1+2+1(2cosx)22cosx1+12=1+2+1

=>(2cosx-1)^2=4(2cosx1)2=4

=>2cosx-1=pm22cosx1=±2

So

cosx=(2+1)/2=1.5>1->"not possible"cosx=2+12=1.5>1not possible

Again

cosx=(-2+1)/2=-1/2=cos(pi-pi/3)cosx=2+12=12=cos(ππ3)

=>cosx=cos((2pi)/3)cosx=cos(2π3)

=>x=2npipm(2pi)/3" where "n in ZZ