2cos2x-4cosx=12cos2x−4cosx=1
=>2(2cos^2x-1)-4cosx=1⇒2(2cos2x−1)−4cosx=1
=>4cos^2x-2-4cosx=1⇒4cos2x−2−4cosx=1
=>(2cosx)^2-2*cosx*1+1^2=1+2+1⇒(2cosx)2−2⋅cosx⋅1+12=1+2+1
=>(2cosx-1)^2=4⇒(2cosx−1)2=4
=>2cosx-1=pm2⇒2cosx−1=±2
So
cosx=(2+1)/2=1.5>1->"not possible"cosx=2+12=1.5>1→not possible
Again
cosx=(-2+1)/2=-1/2=cos(pi-pi/3)cosx=−2+12=−12=cos(π−π3)
=>cosx=cos((2pi)/3)⇒cosx=cos(2π3)
=>x=2npipm(2pi)/3" where "n in ZZ