What is the Taylor series for cosx centered around x = pi?
1 Answer
The general formula for a Taylor series is:
f(x) = sum_(n=0)^(oo) (f^((n))(a))/(n!)(x-a)^n
where
f^((0))(x) = f(x) = cosx
f'(x) = -sinx
f''(x) = -cosx
f'''(x) = sinx
f''''(x) = cosx
etc.
Therefore, the Taylor series centered at
= (f(a))/(0!)(x-a)^0 + (f'(a))/(1!)(x-a)^1 + (f''(a))/(2!)(x-a)^2 + (f'''(a))/(3!)(x-a)^3 + (f''''(a))/(4!)(x-a)^4 + ...
But
= cospi + cancel((f'(a))/(1!)(x-a)^1)^(0) + (-cospi)/(2!)(x-pi)^2 + cancel((f'''(a))/(3!)(x-a)^3)^(0) + (cospi)/(4!)(x-pi)^4 + ...
= color(blue)(-1 + 1/2(x-pi)^2 - 1/24(x-pi)^4 + . . . )
Generalizing this...
- We have that the series alternates sign, so we include a
(-1)^n term somewhere... - We also have the
(x-pi)^n term, obviously, but we specify evenn to ignore the odd terms (which are zero), so we can use2n . - We have a negative sign out front, since the first term in a Taylor series tends to be
1 . - We would have to specify even
n for the factorial terms, so the factorial terms go as(2n)! , i.e.0! ,2! ,4! , etc.
So, our instinct gives us a series representation as:
sum_(n=0)^(oo) -((-1)^(n)(x-pi)^(2n))/((2n)!)
= color(blue)(sum_(n=0)^(oo) ((-1)^(n+1)(x-pi)^(2n))/((2n)!))
= ((-1)^(0+1)(x-pi)^(2*0))/((2*0)!) + ((-1)^(1+1)(x-pi)^(2*1))/((2*1)!) + ((-1)^(2+1)(x-pi)^(2*2))/((2*2)!) + ((-1)^(3+1)(x-pi)^(2*3))/((2*3)!) + . . .
= color(blue)(-1 + 1/2(x-pi)^2 - 1/24(x-pi)^4 + 1/720(x-pi)^6 - . . . )