Question #c9fff

1 Answer
Apr 6, 2017

1/x = 1/2 sum_(n=0)^oo (1-x/2)^n1x=12n=0(1x2)n

converging for x in (0, 4)x(0,4)

Explanation:

f(x) = 1/x = x^-1f(x)=1x=x1

so:

(df)/dx = (-1)x^(-2)dfdx=(1)x2

(d^2f)/dx^2 = (-1)(-2)x^(-3)d2fdx2=(1)(2)x3

and clearly in general:

(d^nf)/dx^n = (-1)^n(n!)x^(-n-1) = (-1)^n(n!)/x^(n+1)dnfdxn=(1)n(n!)xn1=(1)nn!xn+1

The coefficients of the Taylor series around x=2x=2 are then:

c_n = f^((n))(2)/(n!) = (-1)^n/2^(n+1)cn=f(n)(2)n!=(1)n2n+1

so that:

1/x = sum_(n=0)^oo (-1)^n (x-2)^n/2^(n+1)1x=n=0(1)n(x2)n2n+1

or:

1/x = 1/2sum_(n=0)^oo (-1)^n (x-2)^n/2^n = 1/2sum_(n=0)^oo (-1)^n ((x-2)/2)^n = 1/2sum_(n=0)^oo (-(x-2)/2)^n = 1/2sum_(n=0)^oo (1-x/2)^n1x=12n=0(1)n(x2)n2n=12n=0(1)n(x22)n=12n=0(x22)n=12n=0(1x2)n

We can also find the radius of convergence of this series by noting that:

1/x = 1/(2-2+x) = 1/2 1/(1-1+x/2) = 1/2 1/(1-(1-x/2))1x=122+x=12111+x2=1211(1x2)

We know that the sum of a geometric series is:

sum_(n=0)^oo alpha^n = 1/(1-alpha)n=0αn=11α

and is convergent in the interval alpha in (-1,1)α(1,1)

So we have:

1/x = 1/2 1/(1-(1-x/2)) = 1/2 sum_(n=0)^oo (1-x/2)^n1x=1211(1x2)=12n=0(1x2)n

converging for:

-1 < 1-x/2 < 11<1x2<1

-2 < -x/2 < 02<x2<0

0 < x/2 <= 20<x22

0 < x < 40<x<4