Prove that secx-tanx=sqrt((1-sinx)/(1+sinx)?

1 Answer
Apr 7, 2017

Please see below.

Explanation:

secx-tanx

= 1/cosx-sinx/cosx

= (1-sinx)/cosx

= sqrt((1-sinx)^2)/(sqrt(cos^2x))

= sqrt((1-sinx)^2)/(sqrt(1-sin^2x))

= sqrt((1-sinx)^2/(1-sin^2x))

= sqrt((1-sinx)^2/((1+sinx)(1-sinx))

= sqrt((1-sinx)/(1+sinx)