Question #f631a
1 Answer
Explanation:
The first thing you need to do here is to calculate the amount of heat needed to get
To do that, use the equation
color(blue)(ul(color(black)(q = m * c * DeltaT)))
Here
q is the heat gained by the waterm is the mass of the waterc is the specific heat of water, equal to"4.18 J g"^(-1)""^@"C"^(-1) DeltaT is the change in temperature, defined as the difference between the final temperature and the initial temperature of the sample
In your case, you have a mass of
2 color(red)(cancel(color(black)("kg"))) * (10^3color(white)(.)"g")/(1color(red)(cancel(color(black)("kg")))) = 2 * 10^3 "g"
and a change in temperature of
DeltaT = 100^@"C" - 25^@"C" = 75^@"C"
which means that you'll have
q = 2 * 10^3 color(red)(cancel(color(black)("g"))) * "4.18 J" color(red)(cancel(color(black)("g"^(-1)))) color(red)(cancel(color(black)(""^@"C"^(-1)))) * 75color(red)(cancel(color(black)(""^@"C")))
q = 6.27 * 10^2 * overbrace(10^3 color(white)(.)"J")^(color(blue)("= 1 kJ"))
q = 6.27 * 10^2 "kJ"
Now, you know that the enthalpy change of combustion for methane is equal to
DeltaH_"comb" = - "890 kJ mol"^(-1)
This means that when
You can thus say that in order to give off
6.27 * 10^2 color(red)(cancel(color(black)("kJ"))) * "1 mole CH"_4/(890color(red)(cancel(color(black)("kJ")))) = "0.7045 moles CH"_4
To convert this to grams, use the molar mass of methane
0.7045 color(red)(cancel(color(black)("moles CH"_4))) * "16.05 g"/(1color(red)(cancel(color(black)("mole CH"_4)))) = color(darkgreen)(ul(color(black)("11 g")))
I'll leave the answer rounded to two sig figs, but keep in mind that you only have one significant figure for the mass of water and for the final temperature.