Question #04cb2

1 Answer
Apr 7, 2017

I hope that this helps.

Explanation:

Prove: (sin(x)-cos(x))/(sin(x)+cos(x)) = (tan(x)-1)/(tan(x)+1)

Multiply the left side by 1 in the form of (1/cos(x))/(1/cos(x))

(sin(x)-cos(x))/(sin(x)+cos(x))(1/cos(x))/(1/cos(x)) = (tan(x)-1)/(tan(x)+1)

Distribute 1/cos(x) through the numerator and the denominator:

(sin(x)/cos(x)-cos(x)/cos(x))/(sin(x)/cos(x)+cos(x)/cos(x)) = (tan(x)-1)/(tan(x)+1)

Substitute tan(x) for sin(x)/cos(x) and 1 for cos(x)/cos(x)

(tan(x)-1)/(tan(x)+1) = (tan(x)-1)/(tan(x)+1)

Q.E.D.