Question #0a956

1 Answer
Apr 7, 2017

141.26; 218.74141.26;218.74

Explanation:

cos 2t + 10cos t - 8 = 0
Replace cos 2t by (2cos^2 t - 1):
2cos^2 t - 1 + 10cost - 8 = 02cos2t1+10cost8=0
Solve this quadratic equation for cos t:
2cos^2 t + 10cos t - 9 = 02cos2t+10cost9=0.
D = b^2 - 4ac = 100 + 72 = 172D=b24ac=100+72=172 --> d = +- 2sqrt43d=±243
There are 2 real roots:
cos t = -b/(2a) +- d/(2a) = 10/4 +- 2sqrt43)/4cost=b2a±d2a=104±243)4
cos t = 2.5 + 3.28 = 5.78 (Rejected as > 1) cos t = 2.5 - 3.28 = - 0.78 Calculator and unit circle give: cos t = - 0.78 --> t = +- 141^@26 Co-terminal arc of (-141.26) --> t = (360) - 141^@26 = 218^@74 Answers for (0, 2pi): 141^@26; 218^@74#