Question #37d26

2 Answers
Apr 8, 2017

int_0^2sqrt(4y^2-8y+5) dy=sqrt5+1/2log(sqrt5+2)~~2.957

Explanation:

intsqrt(x^2+a^2)=x/2sqrt(x^2+a^2)+a^2/2log (x+sqrt(x^2+a^2)).......Property 1
int_a^bf(x)dx=int_a^bf(a+b-x)dx ........Property 2

int_0^2sqrt(4y^2-8y+5) dy=2int_0^2sqrt(y^2-2y+5/4)dy
rArrint_0^2sqrt(4y^2-8y+5) dy=2int_0^2sqrt((y-1)^2+(1/2)^2
Let y-1=t
then dy=dt
when y=0 ,t=-1
when y=2,t=1

rArrint_0^2sqrt(4y^2-8y+5) dy=2int_-1^1sqrt(t^2+(1/2)^2)
Now use property 2

2int_-1^1sqrt(t^2+(1/2)^2)=2xx2int_0^1sqrt(t^2+(1/2)^2)
Now use property 1
=4xxt/2sqrt(t^2+(1/2)^2)+4xx1/2xx(1/2)^2log(t+sqrt(t^2+(1/2)^2))
Now putting the limits we get

2xx2int_0^1sqrt(t^2+(1/2)^2)=[2xxsqrt5/2+1/2xxlog(1+sqrt5/2)]-[1/2xxlog(1/2)]
=sqrt5+1/2log(sqrt5+2)

Apr 8, 2017

I = sqrt(5) + 1/4ln|(sqrt(5) + 2)/(sqrt(5) - 2)|

Explanation:

Here's another method. We call the integral I.

Complete the square under the .

I = int_0^2 sqrt(4(y^2 - 2y) + 5) dy

I = int_0^2 sqrt(4(y^2 - 2y + 1 - 1) + 5) dy

I = int_0^2 sqrt(4(y^2 - 2y + 1) - 4 + 5) dy

I =int_0^2 sqrt(4(y - 1)^2 + 1) dy

We now let u = y - 1. Then du = dy.

I = int_(-1)^1 sqrt(4u^2 +1) du

We now make the substitution u = 1/2tantheta. Then it follows that du = 1/2sec^2theta d theta.

I = int_(-1)^1 sqrt(4(1/2tantheta)^2 + 1) * 1/2sec^2theta d theta

I=int_(-1)^1 sqrt(tan^2theta + 1) * 1/2sec^2theta d theta

I = int_(-1)^1 sqrt(sec^2theta) * 1/2sec^2theta d theta

I = int_(-1)^1 1/2sec^3theta d theta

This is a known integral that is derived here

I = [1/4secthetatantheta + 1/4ln|sectheta + tantheta|]_(-1)^1

We return to u, where we can evaluate the integral (I didn't change the bounds of integration, so the answer that you would get from evaluating in theta would be wrong).

From our trig substitution, we obtain that 2u = tantheta. So, the side opposite theta measures 2u and the side adjacent measures 1. Then the hypotenuse would measure sqrt(4u^2 + 1).

This means that sectheta = sqrt(4u^2 + 1)/1 = sqrt(4u^2 + 1).

I = [1/4sqrt(4u^2 + 1)(2u) + 1/4ln|sqrt(4u^2 + 1) + 2u|]_(-1)^1

I = 1/2sqrt(5) + 1/4ln|sqrt(5) + 2| - (-1/2sqrt(5) + 1/4ln|sqrt(5) - 2|)

I = 1/2sqrt(5) + 1/4ln|sqrt(5) + 2| + 1/2sqrt(5) - 1/4ln|sqrt(5) - 2|

I = sqrt(5) + 1/4ln|(sqrt(5) + 2)/(sqrt(5) - 2)|

Hopefully this helps!