What is the integral of int secxln(secx + tanx) dxsecxln(secx+tanx)dx?

1 Answer
Apr 8, 2017

The integral equals 1/2ln^2(secx + tanx) + C12ln2(secx+tanx)+C

Explanation:

Let u = ln(secx + tanx)u=ln(secx+tanx). Then by the chain rule we have

du = (secxtanx + sec^2x)/(secx + tanx)dxdu=secxtanx+sec2xsecx+tanxdx and dx = (secx + tanx)/(secxtanx + sec^2x)dudx=secx+tanxsecxtanx+sec2xdu

We now have, calling the integral II:

I = int secx * u * (secx + tanx)/(secxtanx + sec^2x)duI=secxusecx+tanxsecxtanx+sec2xdu

If we do a little factoring we get:

I = int secx * u * (secx + tanx)/(secx(tanx + secx)) duI=secxusecx+tanxsecx(tanx+secx)du

I = int u duI=udu

I = 1/2u^2 + CI=12u2+C

I = 1/2ln^2(secx + tanx) + CI=12ln2(secx+tanx)+C

Hopefully this helps!