What is the integral of int secxln(secx + tanx) dx∫secxln(secx+tanx)dx?
1 Answer
Apr 8, 2017
The integral equals
Explanation:
Let
du = (secxtanx + sec^2x)/(secx + tanx)dxdu=secxtanx+sec2xsecx+tanxdx anddx = (secx + tanx)/(secxtanx + sec^2x)dudx=secx+tanxsecxtanx+sec2xdu
We now have, calling the integral
I = int secx * u * (secx + tanx)/(secxtanx + sec^2x)duI=∫secx⋅u⋅secx+tanxsecxtanx+sec2xdu
If we do a little factoring we get:
I = int secx * u * (secx + tanx)/(secx(tanx + secx)) duI=∫secx⋅u⋅secx+tanxsecx(tanx+secx)du
I = int u duI=∫udu
I = 1/2u^2 + CI=12u2+C
I = 1/2ln^2(secx + tanx) + CI=12ln2(secx+tanx)+C
Hopefully this helps!