For what values of xx does tan(-2x) = cot(x)tan(−2x)=cot(x) ?
1 Answer
Explanation:
Given:
tan(-2x) = cot(x)tan(−2x)=cot(x)
That is:
sin(-2x)/cos(-2x) = cos(x)/sin(x)sin(−2x)cos(−2x)=cos(x)sin(x)
Multiplying both sides by
sin(x)sin(-2x) = cos(x)cos(-2x)sin(x)sin(−2x)=cos(x)cos(−2x)
Subtracting
cos(x)cos(-2x)-sin(x)sin(-2x) = 0cos(x)cos(−2x)−sin(x)sin(−2x)=0
Compare the left hand side with the sum formula for
cos(alpha)cos(beta)-sin(alpha)sin(beta) = cos(alpha+beta)cos(α)cos(β)−sin(α)sin(β)=cos(α+β)
So with
cos(-x) = 0cos(−x)=0
Note that
Hence:
x = ((2k+1)pi)/2x=(2k+1)π2
where
Here are the two functions
graph{(y+tan(2x))(y-cot(x)) = 0 [-10, 10, -5, 5]}