For what values of xx does tan(-2x) = cot(x)tan(2x)=cot(x) ?

1 Answer
Apr 8, 2017

x = ((2k+1)pi)/2" "x=(2k+1)π2 for any integer kk.

Explanation:

Given:

tan(-2x) = cot(x)tan(2x)=cot(x)

That is:

sin(-2x)/cos(-2x) = cos(x)/sin(x)sin(2x)cos(2x)=cos(x)sin(x)

Multiplying both sides by cos(-2x)sin(x)cos(2x)sin(x), this becomes:

sin(x)sin(-2x) = cos(x)cos(-2x)sin(x)sin(2x)=cos(x)cos(2x)

Subtracting sin(-2x)sin(x)sin(2x)sin(x) from both sides, we get:

cos(x)cos(-2x)-sin(x)sin(-2x) = 0cos(x)cos(2x)sin(x)sin(2x)=0

Compare the left hand side with the sum formula for coscos:

cos(alpha)cos(beta)-sin(alpha)sin(beta) = cos(alpha+beta)cos(α)cos(β)sin(α)sin(β)=cos(α+β)

So with alpha=xα=x and beta=-2xβ=2x we get:

cos(-x) = 0cos(x)=0

Note that cos(-x) = cos(x)cos(x)=cos(x)

Hence:

x = ((2k+1)pi)/2x=(2k+1)π2

where kk is any integer.

Here are the two functions tan(-2x)tan(2x) and cot(x)cot(x) plotted together:

graph{(y+tan(2x))(y-cot(x)) = 0 [-10, 10, -5, 5]}