If sin(theta) = 3/5 and theta is in Q1, then what is sin(90^@+theta) ?
1 Answer
Apr 9, 2017
Explanation:
Note that:
cos^2 theta + sin^2 theta = 1
So:
cos theta = +-sqrt(1-sin^2 theta)
color(white)(cos theta) = +-sqrt(1-(3/5)^2)
color(white)(cos theta) = +-sqrt((25-9)/25)
color(white)(cos theta) = +-sqrt(16/25)
color(white)(cos theta) = +-4/5
We can identify the correct sign as
So:
cos theta = 4/5
The sum of angles formula for
sin(alpha+beta) = sin(alpha)cos(beta)+sin(beta)cos(alpha)
Putting
sin(90^@+theta) = sin(90^@)cos(theta)+sin(theta)cos(90^@)
sin(90^@+theta) = 1*cos(theta)+sin(theta)*0
sin(90^@+theta) = cos(theta)
sin(90^@+theta) = 4/5
Note that in passing we have shown:
sin(90^@+theta) = cos(theta)
for any
That is,