Question #4cacf

1 Answer
Apr 10, 2017

We have:

int_0^1 e^(-x^3) dx = sum_(n=0)^oo (-1)^n/(n!) 1/(3n+1)10ex3dx=n=0(1)nn!13n+1

and we can stop the sum at n=3n=3 to have an error less than 0.010.01:

int_0^1 e^(-x^3) dx ~= 169/21010ex3dx169210

Explanation:

We know that the Taylor series expansion of e^tet around t=0t=0 is:

e^t = sum_(n=0)^oo t^n/(n!)et=n=0tnn!

Substituting t=-x^3t=x3:

e^(-x^3) = sum_(n=0)^oo (-1)^n x^(3n)/(n!)ex3=n=0(1)nx3nn!

and since this series has radius of convergence R=ooR= we can integrate term by term:

int_0^1 e^(-x^3) dx = sum_(n=0)^oo (-1)^n int_0^1x^(3n)/(n!)dx10ex3dx=n=0(1)n10x3nn!dx

int_0^1 e^(-x^3) dx = sum_(n=0)^oo (-1)^n/(n!) [x^(3n+1)/(3n+1)]_0^110ex3dx=n=0(1)nn![x3n+13n+1]10

int_0^1 e^(-x^3) dx = sum_(n=0)^oo (-1)^n/(n!) 1/(3n+1)10ex3dx=n=0(1)nn!13n+1

If we stop the sum at the term n=Nn=N, Lagrange's theorem states that:

int_0^1 e^(-x^3) dx = sum_(n=0)^N (-1)^n/(n!) 1/(3n+1)+ (-1)^(N+1)/((N+1)!) xi^(3N+1)/(3N+1)10ex3dx=Nn=0(1)nn!13n+1+(1)N+1(N+1)!ξ3N+13N+1 with 0<=xi<=10ξ1

As xi<=1 => xi^(3N+1) <= 1ξ1ξ3N+11 we have that:

int_0^1 e^(-x^3) dx = sum_(n=0)^N (-1)^n/(n!) 1/(3n+1)+R_N10ex3dx=Nn=0(1)nn!13n+1+RN

where:

abs(R_N) <= 1/((N+1)!)1/(3N+1)|RN|1(N+1)!13N+1

So:

abs(R_1) <= 1/2*1/4 = 1/8|R1|1214=18

abs(R_2) <= 1/6*1/7 = 1/42|R2|1617=142

abs(R_3) <= 1/24*1/10 = 1/240 < 0.01|R3|124110=1240<0.01

So to have an error smaller than 0.010.01 we need four terms:

int_0^1 e^(-x^3) dx ~= 1-1/4+1/14-1/60 = (420-105+30-7)/420=338/420=169/21010ex3dx114+114160=420105+307420=338420=169210