Question #5e4be
1 Answer
Apr 22, 2017
Explanation:
Note that:
1/(9.8-x^2)=1/((sqrt9.8+x)(sqrt9.8-x))
color(white)(1/(9.8-x^2))=A/(sqrt9.8+x)+B/(sqrt9.8-x)
So:
1=A(sqrt9.8-x)+B(sqrt9.8+x)
Letting
1=B(2sqrt9.8)" "=>" "B=1/(2sqrt9.8)
Letting
1=A(2sqrt9.8)" "=>" "A=1/(2sqrt9.8)
Thus:
1/(9.8-x^2)=1/(2sqrt9.8)(1/(sqrt9.8+x))+1/(2sqrt9.8)(1/(sqrt9.8-x))
So:
intdx/(9.8-x^2)=1/(2sqrt9.8)intdx/(sqrt9.8+x)+1/(2sqrt9.8)intdx/(sqrt9.8-x)
color(white)(intdx/(9.8-x^2))=1/(2sqrt9.8)lnabs(sqrt9.8+x)-1/(2sqrt9.8)lnabs(sqrt9.8-x)
color(white)(intdx/(9.8-x^2))=1/(2sqrt9.8)lnabs((sqrt9.8+x)/(sqrt9.8-x))+C