Question #639a7

2 Answers
Apr 10, 2017

int dx/(9x^2-16) = 1/24 ln (abs (3x-4)/abs (3x+4)) +Cdx9x216=124ln(|3x4||3x+4|)+C

Explanation:

Factorize the denominator:

1/(9x^2-16) = 1/((3x+4)(3x-4))19x216=1(3x+4)(3x4)

Then use partial fractions:

1/(9x^2-16) = A/(3x+4)+B/(3x-4)19x216=A3x+4+B3x4

1/(9x^2-16) = (A(3x-4)+B(3x+4))/((3x+4)(3x-4))19x216=A(3x4)+B(3x+4)(3x+4)(3x4)

1/(9x^2-16) = (3Ax+3Bx-4A+4B)/((3x+4)(3x-4))19x216=3Ax+3Bx4A+4B(3x+4)(3x4)

{(3A+3B=0),(-4A+4B=1):}

{(A=-B),(A-B=-1/4):}

{(A=-1/8),(B=1/8):}

So:

int dx/(9x^2-16) = 1/8 int dx/(3x-4) - 1/8 int dx/(3x+4)

int dx/(9x^2-16) = 1/24 int (d(3x-4))/(3x-4) - 1/24 int (d(3x+4))/(3x+4)

int dx/(9x^2-16) = 1/24 (ln abs (3x-4) - ln abs (3x+4)) +C

and using the properties of logarithms:

int dx/(9x^2-16) = 1/24 ln (abs (3x-4)/abs (3x+4)) +C

Apr 18, 2017

Your method can work.

intdx/(9x^2-16)

3x=4sectheta so 3dx=4secthetatanthetad theta:

=int(4/3secthetatanthetad theta)/(16sec^2theta-16)d theta=1/12int(secthetatantheta)/tan^2thetad theta=1/12intcscthetad theta

=1/12lnabs(csctheta-cottheta)

Which can be rewritten as:

=1/12lnabs(sectheta/tantheta-1/tantheta)=1/12lnabs((sectheta-1)/tantheta)

Then using sectheta=3/4x and tantheta=sqrt(sec^2theta-1)=sqrt(9/16x^2-1)=1/4sqrt(9x^2-16):

=1/12lnabs((3/4x-1)/(1/4sqrt(9x^2-16)))

=1/12lnabs((3x-4)/sqrt(9x^2-16))

This is where the "simplification" gets tricky:

=1/12lnabs(sqrt((3x-4)^2/(9x^2-16)))

Bringing the square root out of the logarithm as a 1//2 power using log(a^b)=blog(a):

=1/24lnabs(((3x-4)^2)/(9x^2-16))

=1/24lnabs((3x-4)^2/((3x+4)(3x-4)))

=1/24lnabs((3x-4)/(3x+4))+C

Which is the answer found through using partial fractions. As much as I love trig substitutions, there are definitely times when using partial fractions will get you to the simplest answer the fastest.