What is int \ ln(x+sqrt(x^2+1)) \ dx ?

3 Answers
Apr 10, 2017

int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = x sinh^(-1) x - sqrt(x^2+1) + C

color(white)(int ln(x+sqrt(x^2+1)) dx) = x ln(x+sqrt(x^2+1)) - sqrt(x^2+1) + C

Explanation:

Let us try a hyperbolic substitution.

Let x = sinh theta

Then:

int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = int color(white)(.)ln(sinh theta + sqrt(sinh^2 theta + 1)) dx/(d theta) d theta

color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(sinh theta + cosh theta) cosh theta color(white)(.)d theta

color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)ln(e^theta) cosh theta color(white)(.)d theta

color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = int color(white)(.)theta cosh theta color(white)(.)d theta

color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = theta sinh theta - cosh theta + C

color(white)(int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx) = x sinh^(-1) x - sqrt(x^2+1) + C

If we would prefer not to have an inverse hyperbolic function in the answer, let's find another expression for it:

Let:

y = sinh^(-1) x

Then:

x = sinh y = 1/2(e^y-e^(-y))

Hence:

e^y-2x-e^(-y) = 0

So:

(e^y)^2-(2x)(e^y)-1 = 0

So using the quadratic formula:

e^y = (2x+-sqrt((2x)^2+4))/2

color(white)(e^y) = x+-sqrt(x^2+1)

If y is real then e^y > 0 and we need the + sign here.

So:

e^y = x+sqrt(x^2+1)

and:

y = ln(x+sqrt(x^2+1))

That is:

sinh^(-1) x = ln(x+sqrt(x^2+1))

So:

int color(white)(.)ln(x+sqrt(x^2+1)) color(white)(.)dx = x ln(x+sqrt(x^2+1)) - sqrt(x^2+1) + C

Apr 11, 2017

Note that

d/dxln(x+sqrt(x^2+1))=1/(x+sqrt(x^2+1))(1+x/sqrt(x^2+1))

color(white)(d/dxln(x+sqrt(x^2+1)))=1/sqrt(x^2+1)

Then we should try integration by parts:

intln(x+sqrt(x^2+1))dx

Letting:

{(u=ln(x+sqrt(x^2+1)),=>,du=1/sqrt(x^2+1)dx),(dv=dx,=>,v=x):}

So the integral equals:

=xln(x+sqrt(x^2+1))-intx/sqrt(x^2+1)dx

=xln(x+sqrt(x^2+1))-sqrt(x^2+1)+C

Jul 9, 2017

After using x=tanu and dx=(secu)^2*du transform,

intLn(x+sqrt(x^2+1))dx integral became,

=intLn(secu+tanu)*(secu)^2*du

=tanu*Ln(secu+tanu)-inttanu*[(secu)^2+secu*tanu]/(secu+tanu)*du

=tanu*Ln(secu+tanu)-inttanu*secu*(secu+tanu)/(secu+tanu)*du

=tanu*Ln(secu+tanu)-intsecu*tanu*du

=tanu*Ln(secu+tanu)-secu+C

=tanu*Ln(secu+tanu)-sqrt((tanu)^2+1)+C

=x*Ln(x+sqrt(x^2+1))-sqrt(x^2+1)+C

Explanation:

1) I used x=tanu and dx=(secu)^2*du transform.

2) I solved transformed integral with integration by parts method.

3) I used inverse transform.