Question #8dcc0

1 Answer
Apr 10, 2017

sin(theta)=(-2sqrt(2))/3
sin(2theta) = (-4sqrt(2))/9
cos(2theta) = 7/9
sin(pi/6+theta) = (1-2sqrt(6))/6
tan(x/2) = -sqrt(2)/2

Explanation:

Given: sec(theta)=3

cos(theta) = 1/sec(theta) = 1/3

sin(theta) = -sqrt(1-cos^2(theta)) larr we use the negative because we are told that it is the 4th quadrant.

sin(theta)=-sqrt(1-(1/3)^2)

sin(theta)=-sqrt(9/9-1/9)

sin(theta)=-sqrt(8/9)

sin(theta)=(-2sqrt(2))/3

sin(2theta) = 2sin(theta)cos(theta)

sin(2theta) = 2(-2sqrt(2))/3(1/3)

sin(2theta) = (-4sqrt(2))/9

cos(2theta) = 1-2cos^2(theta)

cos(2theta) = 1-2(1/3)^2

cos(2theta) = 7/9

sin(pi/6+theta) = sin(pi/6)cos(theta)+cos(pi/6)sin(theta)

sin(pi/6+theta) = (1/2)(1/3)+(sqrt3/2)((-2sqrt(2))/3)

sin(pi/6+theta) = (1-2sqrt(6))/6

tan(x/2) = sin(x)/(1+cos(x)

tan(x/2) = ((-2sqrt(2))/3)/(1+ 1/3)

tan(x/2) = -sqrt(2)/2