Given: sec(theta)=3
cos(theta) = 1/sec(theta) = 1/3
sin(theta) = -sqrt(1-cos^2(theta)) larr we use the negative because we are told that it is the 4th quadrant.
sin(theta)=-sqrt(1-(1/3)^2)
sin(theta)=-sqrt(9/9-1/9)
sin(theta)=-sqrt(8/9)
sin(theta)=(-2sqrt(2))/3
sin(2theta) = 2sin(theta)cos(theta)
sin(2theta) = 2(-2sqrt(2))/3(1/3)
sin(2theta) = (-4sqrt(2))/9
cos(2theta) = 1-2cos^2(theta)
cos(2theta) = 1-2(1/3)^2
cos(2theta) = 7/9
sin(pi/6+theta) = sin(pi/6)cos(theta)+cos(pi/6)sin(theta)
sin(pi/6+theta) = (1/2)(1/3)+(sqrt3/2)((-2sqrt(2))/3)
sin(pi/6+theta) = (1-2sqrt(6))/6
tan(x/2) = sin(x)/(1+cos(x)
tan(x/2) = ((-2sqrt(2))/3)/(1+ 1/3)
tan(x/2) = -sqrt(2)/2