Express 2sin^2 200^o in term of 20^o?

1 Answer
Jan 26, 2018

2sin^2 200^o = 2sin^2 20^o

Explanation:

I presume the request is to express the given expression in terms of sin 20^o

We can write:

sin 200^o = sin(180^o + 20^o)

Using the sum of angles formula:

sin(A+B)=sinAcosB+cosAsinB

We have:

sin 200^o = sin 180^o cos 20^o + cos 180^o sin 20^o

Now we know that:

sin 180^o = 0 and cos 180^o = -1

Hence:

sin 200^o = 0 + (-1)sin 20^o = -sin 20^o

And so:

2sin^2 200^o = (2)(-sin 20^o)^2 = 2sin^2 20^o