Express 2sin^2 200^o in term of 20^o?
1 Answer
Jan 26, 2018
2sin^2 200^o = 2sin^2 20^o
Explanation:
I presume the request is to express the given expression in terms of
We can write:
sin 200^o = sin(180^o + 20^o)
Using the sum of angles formula:
sin(A+B)=sinAcosB+cosAsinB
We have:
sin 200^o = sin 180^o cos 20^o + cos 180^o sin 20^o
Now we know that:
sin 180^o = 0 andcos 180^o = -1
Hence:
sin 200^o = 0 + (-1)sin 20^o = -sin 20^o
And so:
2sin^2 200^o = (2)(-sin 20^o)^2 = 2sin^2 20^o