What is sin23x+cos23x?

2 Answers
Apr 11, 2017

Please see below.

Explanation:

sin2A+cos2A=1 is an identity and is true for all A, including A=3x and hence

sin23x+cos23x=1

However, let us try is using values of sin3x and cos3x.

But before this as sin2x+cos2x=1, squaring it

sin4x+cos4x+2sin2xcos2x=1 or sin4x+cos4x=12sin2xcos2x

and sin6x+cos6x=13sin2xcos2x(sin2x+cos2x)

= 13sin2xcos2x - as a3+b3=(a+b)33ab(a+b)

_________

Now coming to proof as

sin3x=3sinx4sin3x and cosx=4cos3x3sinx

Therefore sin23x+cos23x=(3sinx4sin3x)2+(4cos3x3cosx)2

= 9sin2x+16sin6x24sin4x+16cos6x+9cos2x24cos4x

= 9(sin2x+cos2x)+16(sin6x+cos6x)24(sin4x+cos4x)

= 9×1+16(13sin2xcos2x)24(12sin2xcos2x)

= 9+1648sin2xcos2x24+48sin2xcos2x

= 1

Apr 11, 2017

Start from trig identity:
sin2x+cos2x=1
In this identity, x is a variable, so we can substitute x by another variable X = 3x. Therefore:
sin2X+cos2X=sin2(3x)+cos2(3x)=1