sin2A+cos2A=1 is an identity and is true for all A, including A=3x and hence
sin23x+cos23x=1
However, let us try is using values of sin3x and cos3x.
But before this as sin2x+cos2x=1, squaring it
sin4x+cos4x+2sin2xcos2x=1 or sin4x+cos4x=1−2sin2xcos2x
and sin6x+cos6x=1−3sin2xcos2x(sin2x+cos2x)
= 1−3sin2xcos2x - as a3+b3=(a+b)3−3ab(a+b)
_________
Now coming to proof as
sin3x=3sinx−4sin3x and cosx=4cos3x−3sinx
Therefore sin23x+cos23x=(3sinx−4sin3x)2+(4cos3x−3cosx)2
= 9sin2x+16sin6x−24sin4x+16cos6x+9cos2x−24cos4x
= 9(sin2x+cos2x)+16(sin6x+cos6x)−24(sin4x+cos4x)
= 9×1+16(1−3sin2xcos2x)−24(1−2sin2xcos2x)
= 9+16−48sin2xcos2x−24+48sin2xcos2x
= 1