Given:
2x+y-z=9
-x+6y+2z=-17
5x+7y+z=4
Write the equation -x+6y+2z=-17 as the first row of an Augmented Matrix :
[
(-1,6,2,|,-17)
]
Add a row for the equation 2x+y-z=9:
[
(-1,6,2,|,-17),
(2,1,-1,|,9)
]
Add a row for the equation 5x+7y+z=4:
[
(-1,6,2,|,-17),
(2,1,-1,|,9),
(5,7,1,|,4)
]
Perform Elementary Row Operations until an identity matrix is obtained.
R_2+2R_1toR_2
[
(-1,6,2,|,-17),
(0,13,3,|,-25),
(5,7,1,|,4)
]
R_3+5R_1toR_3
[
(-1,6,2,|,-17),
(0,13,3,|,-25),
(0,37,11,|,-81)
]
13R_3-37R_2toR_3
[
(-1,6,2,|,-17),
(0,13,3,|,-25),
(0,0,32,|,-128)
]
R_3/32toR_3
[
(-1,6,2,|,-17),
(0,13,3,|,-25),
(0,0,1,|,-4)
]
R_2- 3R_3toR_2
[
(-1,6,2,|,-17),
(0,13,0,|,-13),
(0,0,1,|,-4)
]
R_2/13toR_2
[
(-1,6,2,|,-17),
(0,1,0,|,-1),
(0,0,1,|,-4)
]
R_1 - 2R_3toR_1
[
(-1,6,0,|,-9),
(0,1,0,|,-1),
(0,0,1,|,-4)
]
R_1 - 6R_2toR_1
[
(-1,0,0,|,-3),
(0,1,0,|,-1),
(0,0,1,|,-4)
]
-1R_1toR_1
[
(1,0,0,|,3),
(0,1,0,|,-1),
(0,0,1,|,-4)
]
We have an identity matrix on the left, therefore, the solution set is on the right, x = 3, y = -1, and z = -4.
Check:
2(3)+(-1)-(-4)=9
-(3)+6(-1)+2(-4)=-17
5(3)+7(-1)+(-4)=4
9=9
-17=-17
4=4
This checks.