Question #4c170

1 Answer
Apr 12, 2017

x = 3, y = -1, and z = -4

Explanation:

Given:
2x+y-z=9
-x+6y+2z=-17
5x+7y+z=4

Write the equation -x+6y+2z=-17 as the first row of an Augmented Matrix :

[ (-1,6,2,|,-17) ]

Add a row for the equation 2x+y-z=9:

[ (-1,6,2,|,-17), (2,1,-1,|,9) ]

Add a row for the equation 5x+7y+z=4:

[ (-1,6,2,|,-17), (2,1,-1,|,9), (5,7,1,|,4) ]

Perform Elementary Row Operations until an identity matrix is obtained.

R_2+2R_1toR_2

[ (-1,6,2,|,-17), (0,13,3,|,-25), (5,7,1,|,4) ]

R_3+5R_1toR_3

[ (-1,6,2,|,-17), (0,13,3,|,-25), (0,37,11,|,-81) ]

13R_3-37R_2toR_3

[ (-1,6,2,|,-17), (0,13,3,|,-25), (0,0,32,|,-128) ]

R_3/32toR_3

[ (-1,6,2,|,-17), (0,13,3,|,-25), (0,0,1,|,-4) ]

R_2- 3R_3toR_2

[ (-1,6,2,|,-17), (0,13,0,|,-13), (0,0,1,|,-4) ]

R_2/13toR_2

[ (-1,6,2,|,-17), (0,1,0,|,-1), (0,0,1,|,-4) ]

R_1 - 2R_3toR_1

[ (-1,6,0,|,-9), (0,1,0,|,-1), (0,0,1,|,-4) ]

R_1 - 6R_2toR_1

[ (-1,0,0,|,-3), (0,1,0,|,-1), (0,0,1,|,-4) ]

-1R_1toR_1

[ (1,0,0,|,3), (0,1,0,|,-1), (0,0,1,|,-4) ]

We have an identity matrix on the left, therefore, the solution set is on the right, x = 3, y = -1, and z = -4.

Check:

2(3)+(-1)-(-4)=9
-(3)+6(-1)+2(-4)=-17
5(3)+7(-1)+(-4)=4

9=9
-17=-17
4=4

This checks.