Question #8bd05

3 Answers
Apr 13, 2017

See the Explanation.

Explanation:

Recall that, costheta=sin(90^@-theta)..........(1)

theta=60^@+x rArr90^@-theta=90^@-(60^@+x)=30^@-x.

:.," by "(1), cos(60^@+x)=sin(30^@-x).

Hence, the Verification.

Apr 13, 2017

Proved.

Explanation:

Prove: cos(60^@ +x)=sin(30^@-x)

Use the identity cos(A+B) = cos(A)cos(B)-sin(A)sin(B) where A = 60^@ and B = x on the left side:

cos(60^@)cos(x)+sin(60^@)sin(x)=sin(30^@-x)

Use the fact cos(60^@) = sin(30^@) on the left side:

sin(30^@)cos(x)+sin(60^@)sin(x)=sin(30^@-x)

Use the fact sin(60^@) = cos(30^@) on the left side:

sin(30^@)cos(x)+cos(30^@)sin(x)=sin(30^@-x)

Substitute -x for x on the left side:

sin(30^@)cos(-x)+cos(30^@)sin(-x)=sin(30^@-x)

Use the fact that the cosine function is even (cos(-x) = cos(x)) on the left side:

sin(30^@)cos(x)+cos(30^@)sin(-x)=sin(30^@-x)

Use the fact that the sine function is odd (sin(-x) = -sin(x)) on the left side:

sin(30^@)cos(x)-cos(30^@)sin(x)=sin(30^@-x)

Use the identity sin(A-B) = sin(A)cos(B)-cos(A)sin(B) where A = 30^@ and B = x on the left side:

sin(30^@-x)=sin(30^@-x)

Q.E.D.

Apr 13, 2017

see explanation.

Explanation:

Simplify both sides of the identity and compare.

Using the following color(blue)"Addition formulae"

• sin(A-B)=sinAcosB-cosAsinB

• cos(A+B)=cosAcosB-sinAsinB

"left side " = cos(60+x)^@

color(white)(left side)=cos60^@cosx^@-sin60^@sinx^@

color(white)(left side)=1/2cosx^@-sqrt3/2sinx^@larr" left side"

color(orange)"Reminder" [cos60^@=sin30^@=1/2]

"and " [cos30^@=sin60^@=sqrt3/2]

"right side " =sin(30-x)^@

color(white)(right side)=sin30^@cosx^@-cos30^@sinx^@

color(white)(right side)=1/2cosx^@-sqrt3/2sinx^@larr" right side"

"left side " =" right side "rArr" verified"