5(tan^2x-cos^2x)=2cos^2x+9,
:. 5tan^2x=7cos^2x+9,
:. (5sin^2x)/cos^2x=7cos^2x+9,
:. 5sin^2x=5(1-cos^2x)=7cos^4x+9cos^2x,
:. 7cos^4x+14cos^2x-5=0,
:. cos^2x={-14+-sqrt(14^2-4(7)(-5))}/14, &, because, cos^2x >=0,
cos^2x!={-14-sqrt(14^2-4(7)(-5))}/14, so that,
cos^2x=(-14+sqrt336)/14=(-14+4sqrt21)/14, or,
cos^2x=-1+2/7sqrt21.
:. 2cos^2x-1=2(-1+2/7sqrt21)-1=-3+4/7sqrt21...(1).
Now, the Reqd. Value=cos4x=2cos^2 2x-1,
=2(2cos^2x-1)^2-1
=2(-3+4/7sqrt21)^2-1,............[because, (1)]
=2(9-24/7sqrt21+48/7)-1,
=2/7(111-24sqrt21)-1,
=1/7(215-48sqrt21) ~~-0.7091
Enjoy Maths.!