Question #db20d

2 Answers
Apr 14, 2017

cosx = pm sqrt((m^2-1)/(n^2-1))

Explanation:

We have equivalently

{(sinx/sqrt(1-sin^2x)=n siny/sqrt(1-sin^2y)),(siny=1/msinx):}

or

sinx/sqrt(1-sin^2x)=(n/m)sin x/sqrt(1-1/m^2sin^2x)

or

sqrt(1-1/m^2sin^2x)=(n/m)sqrt(1-sin^2x)

and squaring both sides

1-1/m^2sin^2x=(n/m)^2(1-sin^2x)

solving for sin^2x we have

sin^2x=(n^2-m^2)/(n^2-1)=1-cos^2x

and finally

cos^2x=(m^2-1)/(n^2-1)

cosx = pm sqrt((m^2-1)/(n^2-1))

Apr 15, 2017

Given

tanx=ntany........[1]

sinx=nsiny........[2]

Dividing [2] by [1]

cosx=m/ncosy........[3]

=>cosy=n/mcosx

Squaring [2]

sin^2x=m^2sin^2y

=>1-cos^2x=m^2(1-cos^2y)

=>1-cos^2x=m^2(1-n^2/m^2cos^2x)

=>1-cos^2x=m^2-n^2cos^2x

=>n^2cos^2x-cos^2x=m^2-1

=>(n^2-1)cos^2x=m^2-1

=>cos^2x=(m^2-1)/(n^2-1)

=>cosx=pmsqrt((m^2-1)/(n^2-1))