cot^2x-cscx=1cot2x−cscx=1
=>csc^2x-1-cscx-1=0⇒csc2x−1−cscx−1=0
=>csc^2x-cscx-2=0⇒csc2x−cscx−2=0
=>csc^2x-2cscx+cscx-2=0⇒csc2x−2cscx+cscx−2=0
=>cscx(cscx-2)+1(cscx-2)=0⇒cscx(cscx−2)+1(cscx−2)=0
=>(cscx-2)(cscx+1)=0⇒(cscx−2)(cscx+1)=0
when cscx-2=0cscx−2=0
=>sinx=1/2=sin(pi/6)⇒sinx=12=sin(π6)
=>x=npi+(-1)^npi/6" where "n inZZ
when cscx+1=0
=>sinx=-1=sin(-pi/2)
=>x=npi-(-1)^npi/2" where "n inZZ