If 8sinx+3cosx=5 then what is cot x ?

2 Answers
Apr 17, 2017

cot x =3/2+-5/4sqrt(3)

Explanation:

Given:

8sinx+3cosx=5

Subtract 3cosx from both sides to get:

8sinx=5-3cosx

Square both sides to get:

64sin^2x=25-30cosx+9cos^2x

Note that squaring will not introduce spurious solutions in this case since sin(-x) = -sin(x) but cos(-x) = cos(x). So both signs are possible.

Use cos^2x+sin^2x=1 to reexpress the left hand side and get:

64-64cos^2x = 25-30cosx+9cos^2x

Add 64cos^2x-64 to both sides to get:

0 = 73cos^2x-30cosx-39

Use the quadratic formula to get:

cos x = (30+-sqrt((-30)^2-4(73)(-39)))/(2*73)

color(white)(cos x) = (30+-sqrt(900+11388))/146

color(white)(cos x) = (30+-sqrt(12288))/146

color(white)(cos x) = 15/73+-32/73sqrt(3)

Then from the original equation:

sin x = (5-3cos x)/8

So if cos x = 15/73+32/73sqrt(3) then:

sin x = (5-3(15/73+32/73sqrt(3)))/8

color(white)(sin x) = 40/73-12/73sqrt(3)

resulting in:

cot x = cos x / sin x

color(white)(cot x) = (15/73+32/73sqrt(3))/(40/73-12/73sqrt(3))

color(white)(cot x) = (15+32sqrt(3))/(40-12sqrt(3))

color(white)(cot x) = ((15+32sqrt(3))(10+3sqrt(3)))/(4(10-3sqrt(3))(10+3sqrt(3)))

color(white)(cot x) = (150+45sqrt(3)+320sqrt(3)+288)/(4(100-27))

color(white)(cot x) = (438+365sqrt(3))/292

color(white)(cot x) = 3/2+5/4sqrt(3)

Similarly, if cos x = 15/73-32/73sqrt(3) then:

cot x = 3/2-5/4sqrt(3)

Apr 17, 2017

cotx=1/4(6+-5sqrt3), or, 3/2+-5/4sqrt3.

Explanation:

Given that, 8sinx+3cosx=5......(ast).

Dividing by sinx!=0," we get, "8+3cotx=5cscx," &, squaring,"

64+48cotx+9cot^2x=25csc^2x=25(1+cot^2x)

rArr 16cot^2x-48cotx=39

Completing square, 16cot^2x-48cotx+36=39+36=75

:. (4cotx-6)^2=75 rArr 4cotx-6=+-5sqrt3

"Therefore, "cotx=1/4(6+-5sqrt3), or, 3/2+-5/4sqrt3.

The above soln. was derived on the assumption that, sinxne0.

If, sinx=0, then, cosx=+-1, and sub.ing these in (ast),

we get, +-3=5, which is impossible. Hence, sinxne0 holds good.

Enjoy Maths.!