If 8sinx+3cosx=5 then what is cot x ?
2 Answers
Explanation:
Given:
8sinx+3cosx=5
Subtract
8sinx=5-3cosx
Square both sides to get:
64sin^2x=25-30cosx+9cos^2x
Note that squaring will not introduce spurious solutions in this case since
Use
64-64cos^2x = 25-30cosx+9cos^2x
Add
0 = 73cos^2x-30cosx-39
Use the quadratic formula to get:
cos x = (30+-sqrt((-30)^2-4(73)(-39)))/(2*73)
color(white)(cos x) = (30+-sqrt(900+11388))/146
color(white)(cos x) = (30+-sqrt(12288))/146
color(white)(cos x) = 15/73+-32/73sqrt(3)
Then from the original equation:
sin x = (5-3cos x)/8
So if
sin x = (5-3(15/73+32/73sqrt(3)))/8
color(white)(sin x) = 40/73-12/73sqrt(3)
resulting in:
cot x = cos x / sin x
color(white)(cot x) = (15/73+32/73sqrt(3))/(40/73-12/73sqrt(3))
color(white)(cot x) = (15+32sqrt(3))/(40-12sqrt(3))
color(white)(cot x) = ((15+32sqrt(3))(10+3sqrt(3)))/(4(10-3sqrt(3))(10+3sqrt(3)))
color(white)(cot x) = (150+45sqrt(3)+320sqrt(3)+288)/(4(100-27))
color(white)(cot x) = (438+365sqrt(3))/292
color(white)(cot x) = 3/2+5/4sqrt(3)
Similarly, if
cot x = 3/2-5/4sqrt(3)
Explanation:
Given that,
Dividing by
Completing square,
The above soln. was derived on the assumption that,
If,
we get,
Enjoy Maths.!