Solve sin x = 2cos^2x - 1 where x in [0,2pi]?
2 Answers
x= pi/6, (5pi)/6, (3pi)/2
Explanation:
We want to solve:
sin x = 2cos^2x - 1 wherex in [0,2pi]
Using the identity
sin x = 2(1-sin^2x) - 1
" " = 2-2sin^2x- 1
" " = 1-2sin^2x
:. 2sin^2x + sinx -1 = 0
Which is a quadratic in
(2sinx -1)(sinx +1) = 0
Leading to two possible solution:
A)
2sinx -1 => sinx=1/2
B)sinx+1 = 0 => sinx=-1
If we consider the graph of
Case (A): **
=> x=pi/6, pi-pi/6
" " = pi/6, (5pi)/6
Case (B): **
=> x=(3pi)/2
Hence, There are three solutions in the specified interval:
x= pi/6, (5pi)/6, (3pi)/2
Explanation:
Bring the equation to standard form:
Since a - b + c = 0, use shortcut. The 2 real roots are:
Use trig table and unit circle -->
a. sin x = - 1 -->
b.