Solve (sinx-cosx)^2=1-sin2x (sinx−cosx)2=1−sin2x?
1 Answer
Apr 28, 2017
You have asked how to solve
(sinx-cosx)^2=1-sin2x (sinx−cosx)2=1−sin2x
But in ffact the above is an identity not an equation, which we can show as follows:
Multiplying out the LHS we get:
(sinx-cosx)^2 -= sin^2x-2sinxcosx+cos^2x (sinx−cosx)2≡sin2x−2sinxcosx+cos2x
" " -= sin^2x+cos^2x-2sinxcosx ≡sin2x+cos2x−2sinxcosx
So then using the identities:
sin^2x+cos^2x -= 1 sin2x+cos2x≡1
sin2x -= 2sinxcosx sin2x≡2sinxcosx
We have:
(sinx-cosx)^2 -= 1-sin2x \ \ \ \ QED