Solve (sinx-cosx)^2=1-sin2x (sinxcosx)2=1sin2x?

1 Answer
Apr 28, 2017

You have asked how to solve

(sinx-cosx)^2=1-sin2x (sinxcosx)2=1sin2x

But in ffact the above is an identity not an equation, which we can show as follows:

Multiplying out the LHS we get:

(sinx-cosx)^2 -= sin^2x-2sinxcosx+cos^2x (sinxcosx)2sin2x2sinxcosx+cos2x
" " -= sin^2x+cos^2x-2sinxcosx sin2x+cos2x2sinxcosx

So then using the identities:

sin^2x+cos^2x -= 1 sin2x+cos2x1
sin2x -= 2sinxcosx sin2x2sinxcosx

We have:

(sinx-cosx)^2 -= 1-sin2x \ \ \ \ QED