Show that? : tan(arcsinx) = x/sqrt(1 -x^2)
1 Answer
May 2, 2017
Let
y=arcsinx iff x=siny
Then using
sin^2y+cos^2y = 1 => x^2+cos^2y=1
:. cos^2y = 1 -x^2
:. sec^2y = 1/(1 -x^2)
And, using the trig identity
tan^2y+1-=sec^2y
:. tan^2y = sec^2y - 1
" " = 1/(1 -x^2) - 1
" " = (1-(1-x^2))/(1 -x^2)
" " = (x^2)/(1 -x^2)
And so:
:. tany = sqrt((x^2)/(1 -x^2))
" " = x/sqrt(1 -x^2)
But
tan(arcsinx) = x/sqrt(1 -x^2) \ \ \ QED