Show that? : tan(arcsinx) = x/sqrt(1 -x^2)

1 Answer
May 2, 2017

Let

y=arcsinx iff x=siny

Then using sin^2A+cos^2A -= 1; we have:

sin^2y+cos^2y = 1 => x^2+cos^2y=1
:. cos^2y = 1 -x^2
:. sec^2y = 1/(1 -x^2)

And, using the trig identity tan^2A+1-=sec^2A; we have:

tan^2y+1-=sec^2y

:. tan^2y = sec^2y - 1
" " = 1/(1 -x^2) - 1
" " = (1-(1-x^2))/(1 -x^2)
" " = (x^2)/(1 -x^2)

And so:

:. tany = sqrt((x^2)/(1 -x^2))
" " = x/sqrt(1 -x^2)

But y=arcsinx; therefore:

tan(arcsinx) = x/sqrt(1 -x^2) \ \ \ QED