What is the derivative of y = sinh^(-1)5x?
1 Answer
May 10, 2017
dy/dx = 5/sqrt(1 + 25x^2)
Explanation:
Let:
y = sinh^(-1)5x => sinhy=5x
Differentiating Implicitly we have:
coshy dy/dx = 5
:. dy/dx = 5/coshy
Now using the Hyperbolic Identity:
cosh^2x-sinh^2x -= 1
We can write:
cosh^2x - (5x)^2 = 1
:. cosh^2x = 1 + 25x^2
:. \ coshx = sqrt(1 + 25x^2)
So then:
dy/dx = 5/coshy
\ \ \ \ \ \ = 5/sqrt(1 + 25x^2)