Formatted question: Prove (1-cosx)/sinx=(tanx-sinx)/(tanxsinx)1−cosxsinx=tanx−sinxtanxsinx
Since the right-hand side (RHS) appears more complicated, we will start with that side.
Consider that tanx=sinx/cosxtanx=sinxcosx. We can substitute this in for the tanxtanx in the numerator and denominator:
RHS=((sinx/cosx)-sinx)/((sinx/cosx)sinx)RHS=(sinxcosx)−sinx(sinxcosx)sinx
By simplifying:
=((sinx/cosx)-(sinxcosx)/cosx)/(sin^2x/cosx)=(sinxcosx)−sinxcosxcosxsin2xcosx
=((sinx-sinxcosx)/cosx)/(sin^2x/cosx)=sinx−sinxcosxcosxsin2xcosx
=(((sinx(1-cosx))/cosx)*(cosx/sin^2x)=((sinx(1−cosx)cosx)⋅(cosxsin2x)
We can cancel one of sinxsinx's and the cosxcosx from the numerator and denominator since we are multiplying the two fractions:
=(1-cosx)/sinx=LHS=1−cosxsinx=LHS
therefore (1-cosx)/sinx=(tanx-sinx)/(tanxsinx)