Question #6927d

2 Answers
May 23, 2017

frac(d)(dx)(cos(4 x)) = - 4 sin(4 x)

Explanation:

We have: cos(4 x)

This expression can be differentiated using the "chain rule".

Let u = 4 x Rightarrow u' = 4 and v = cos(u) Rightarrow v' = - sin(u):

Rightarrow frac(d)(dx)(cos(4 x)) = u' cdot v'

Rightarrow frac(d)(dx)(cos(4 x)) = 4 cdot (- sin(u))

Rightarrow frac(d)(dx)(cos(4 x)) = - 4 sin(u)

Then, let's replace u with 4 x:

Rightarrow frac(d)(dx)(cos(4 x)) = - 4 sin(4 x)

May 23, 2017

-4sin(4x)

Explanation:

"differentiate using the "color(blue)"chain rule"

• d/dx(f(g(x)))=f'(g(x))xxg'(x)

rArrd/dx(cos(4x))=-sin(4x)xxd/dx(4x)

color(white)(xxxxxxxxxxx)=-4sin(4x)