Question #e251c Calculus Introduction to Integration Definite and indefinite integrals 1 Answer GiĆ³ Jun 3, 2017 I tried this: Explanation: #int(4e^t+3)dt=int4e^tdt+int3dt=4e^t+3t+c# #int(2/x^2+5sqrt(x))dx=int2x^-2dx+int5x^(1/2)dx=2x^-1/(-1)+5(x^(3/2))/(3/2)+c=-2/x+10/3xsqrt(x)+c# I used the fact that: #intx^ndx=x^(n+1)/(n+1)+c# and: #x^-n=1/x^n# #x^(m/n)=rootn(x^m)# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1164 views around the world You can reuse this answer Creative Commons License