What is the solution of the Differential Equation x(dy/dx)+3y+2x^2=x^3+4x x(dydx)+3y+2x2=x3+4x?
1 Answer
y = (5x^6 - 12x^5+30x^4 + C)/(30x^3) y=5x6−12x5+30x4+C30x3
Explanation:
We have:
x(dy/dx)+3y+2x^2=x^3+4x x(dydx)+3y+2x2=x3+4x
We can use an integrating factor when we have a First Order Linear non-homogeneous Ordinary Differential Equation of the form;
dy/dx + P(x)y=Q(x) dydx+P(x)y=Q(x)
So rewrite the equations in standard form as:
(dy/dx)+3/xy = x^2-2x+4 ..... [1]
Then the integrating factor is given by;
I = e^(int P(x) dx)
\ \ = exp(int \ 3/x \ dx)
\ \ = exp( 3lnx )
\ \ = exp( lnx^3 )
\ \ = x^3
And if we multiply the DE [1] by this Integrating Factor,
(dy/dx)x^3+3x^2y = x^5-2x^4+4x^3
:. d/dx (x^3y) = x^5-2x^4+4x^3
Which we can directly integrate to get:
x^3y = int \ x^5-2x^4+4x^3 \ dx
:. x^3y = x^6/6-(2x^5)/5+x^4 + c
:. x^3y = (5x^6 - 12x^5+30x^4 + 30c)/30
:. y = (5x^6 - 12x^5+30x^4 + C)/(30x^3)
Confirming the given answer.