What is the general solution of the differential equation? : 2y'' + 3y' -y =0
1 Answer
Jun 10, 2017
y = Ae^((-3/4-sqrt(17)/4)x)+Be^((-3/4+sqrt(17)/4)x)
Explanation:
We have:
2y'' + 3y' -y =0
This is a second order linear Homogeneous Differentiation Equation. The standard approach is to look at the Auxiliary Equation, which is the quadratic equation with the coefficients of the derivatives, i.e.
2m^2+3m-1=0
This has two distinct real solutions:
m_1=-3/4-sqrt(17)/4 andm_2=-3/4+sqrt(17)/4
And so the solution to the DE is;
\ \ \ \ \ y = Ae^(m_1x)+Be^(m_2x) WhereA,B are arbitrary constants
:. y = Ae^((-3/4-sqrt(17)/4)x)+Be^((-3/4+sqrt(17)/4)x)
Note
The given solution:
y=y_1=e^(-2x)
is not actually a solution of the given DE, as:
y' \ \ =-2e^(-2x)
y''=4e^(-2x)
And
2y'' + 3y' -y =8e^(-2x) -6e^(-2x) -e^(-2x) ne 0