Question #28e6e

1 Answer
Jun 16, 2017

sin theta sec^7 theta+cos theta cosec^7 thetasinθsec7θ+cosθcosec7θ

=sintheta/costheta sec^6 theta+costheta/sintheta cosec^6 theta=sinθcosθsec6θ+cosθsinθcosec6θ

=tantheta (1+tan^2theta)^3 +1/tantheta (1+cot^2theta)^3=tanθ(1+tan2θ)3+1tanθ(1+cot2θ)3

=tantheta (1+tan^2theta)^3 +1/tantheta (1+1/tan^2theta)^3=tanθ(1+tan2θ)3+1tanθ(1+1tan2θ)3

=sqrt(a/b) (1+a/b)^3 +sqrt(b/a) (1+b/a)^3=ab(1+ab)3+ba(1+ba)3

=sqrt(a/b)xx (a+b)^3/b^3 +sqrt(b/a) xx(a+b)^3/a^3=ab×(a+b)3b3+ba×(a+b)3a3

=(a+b)^3(sqrta/b^(7/2) +sqrtb/a^(7/2))=(a+b)3(ab72+ba72)

=((a+b)^3(a^4+b^4))/((ab)^(7/2))=(a+b)3(a4+b4)(ab)72

Q-2

Let
tanA=3 and tanB=2tanA=3andtanB=2

So A>BA>B

We are to find out

sin2(A-B)sin2(AB)

Expanding we get

sin2(A-B)=sin2Acos2B-cos2Asin2Bsin2(AB)=sin2Acos2Bcos2Asin2B

So we are to know

sin2A,cos2B,cos2A and sin2Bsin2A,cos2B,cos2Aandsin2B

Now sin2A=(2tanA)/(1+tan^2A)sin2A=2tanA1+tan2A

=>sin2A=(2xx3)/(1+3^2)=3/5sin2A=2×31+32=35

And

sin2B=(2tanB)/(1+tan^2B)sin2B=2tanB1+tan2B

=>sin2B=(2xx2)/(1+2^2)=4/5sin2B=2×21+22=45

cos2A=(1-tan^2A)/(1+tan^2A)cos2A=1tan2A1+tan2A

=>cos2A=(1-3^2)/(1+3^2)=-4/5cos2A=1321+32=45

And

cos2B=(1-tan^2B)/(1+tan^2B)cos2B=1tan2B1+tan2B

=>cos2B=(1-2^2)/(1+2^2)=-3/5cos2B=1221+22=35

Now inserting the values we get

sin2(A-B)sin2(AB)

=sin2Acos2B-cos2Asin2B=sin2Acos2Bcos2Asin2B

=3/5xx(-3/5)-(-4/5)xx4/5=35×(35)(45)×45

=-9/25+16/25=7/25=925+1625=725