Differentiate f(x)=2x-3 using first principal?

2 Answers
Jun 22, 2017

(df)/(dx)=2

Explanation:

For a function f(x), its derivative using first principal is given by

(df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

Here we have f(x)=2x-3,

hence f(x+h)=2(x+h)-3=2x+2h-3

and f(x+h)=f(x)=2h

and (df)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

= Lt_(h->0)(2h)/h

= Lt_(h->0)2

= 2

Jun 22, 2017

f'(x)=2

Explanation:

"differentiating from first principles"

f'(x)=lim_(hto0)(f(x+h)-f(x))/h

color(white)(f'(x))=lim_(hto0)(2(x+h)-3-2x+3)/h

color(white)(f'(x))=lim_(hto0)(2x+2h-2x)/h

color(white)(f'(x))=lim_(hto0)(2cancel(h))/cancel(h)=2