What is the solution to the Initial Value Problem (IVP) y''=2e^(-x) with the IVs y(0)=1,y'(0)=0?
2 Answers
Explanation:
integrating (1) once we get
using the initial condition
integrating once more
using the initial condition
f(x) = 2e^(-x) + 2x -1
Explanation:
As this is an IVP (Initial Value Problem) we can use Laplace Transforms:.
We have:
y''=2e^(-x) with the IVsy(0)=1,y'(0)=0
If we take Laplace Transformations of both sides of the above equation then we get:
ℒ \ {y''} = ℒ \ {2e^(-x) }
Then using the known property of the LT:
ℒ \ {y''} =s^2 F(s)−s f(0)−f'(0)
ℒ \ {e^(at)} =1/(s-a)
Then we have:
s^2 F(s)−s f(0)−f'(0) = 2/(s+1)
:. s^2 F(s)-s-0 = 2/(s+1)
:. s^2 F(s) = s+2/(s+1)
:. s^2 F(s) = (s(s+1)+2)/(s+1)
:. s^2 F(s) = (s^2+s+2)/(s+1)
:. F(s) = (s^2+s+2)/(s^2(s+1))
Now we can use partial fraction to decompose this expression:
(s^2+s+2)/(s^2(s+1)) -= A/s + B/s^2 + C/(s+1)
=> s^2+s+2-= As(s+1) + B(s+1) + Cs^2
We can find the constant coefficient as follows:
Put
s=0 \ \ \ \ \ => 2=0+B+0 => B=2
Puts=-1 => 2=0+0+C => C=2
CompareCoef(s^2) => 1=A+C => A=-1
Thus we have:
F(s) = -1/s + 2/s^2 +2/(s+1)
Now if we take Inverse Laplace Transformations we have:
ℒ^(-1) \ {F(s) } = ℒ^(-1) \ {-1/s} + ℒ^(-1) \ {2/s^2} +ℒ^(-1) \ {2/(s+1)}
Again using the known property of the LT (inverses):
f(x) = -1 + 2x +2e^(-x)
Hence the complete solution is:
f(x) = 2e^(-x) + 2x -1