What is the solution to the Initial Value Problem (IVP) y''=2e^(-x) with the IVs y(0)=1,y'(0)=0?

2 Answers
Jun 24, 2017

y(x)=2e^(-x)+2x-1

Explanation:

y''=2e^(-x)--(1)

y(0)=1---(2)

y'(0)=0---(3)

integrating (1) once we get

y'(x)=-2e^(-x)+C_1

using the initial condition (3)

0=-2e^0+C_1

0=-2+C_1=>C_1=2

:.y'(x)=-2e^(-x)+2

integrating once more

y(x)=2e^(-x)+2x+C_2

using the initial condition (2)

1=2e^0+2xx0+C_2

1=2+0+C_2

C_2=-1

:.y(x)=2e^(-x)+2x-1

Jun 24, 2017

f(x) = 2e^(-x) + 2x -1

Explanation:

As this is an IVP (Initial Value Problem) we can use Laplace Transforms:.

We have:

y''=2e^(-x) with the IVs y(0)=1,y'(0)=0

If we take Laplace Transformations of both sides of the above equation then we get:

ℒ \ {y''} = ℒ \ {2e^(-x) }

Then using the known property of the LT:

ℒ \ {y''} =s^2 F(s)−s f(0)−f'(0)
ℒ \ {e^(at)} =1/(s-a)

Then we have:

s^2 F(s)−s f(0)−f'(0) = 2/(s+1)

:. s^2 F(s)-s-0 = 2/(s+1)
:. s^2 F(s) = s+2/(s+1)
:. s^2 F(s) = (s(s+1)+2)/(s+1)
:. s^2 F(s) = (s^2+s+2)/(s+1)

:. F(s) = (s^2+s+2)/(s^2(s+1))

Now we can use partial fraction to decompose this expression:

(s^2+s+2)/(s^2(s+1)) -= A/s + B/s^2 + C/(s+1)
=> s^2+s+2-= As(s+1) + B(s+1) + Cs^2

We can find the constant coefficient as follows:

Put s=0 \ \ \ \ \ => 2=0+B+0 => B=2
Put s=-1 => 2=0+0+C => C=2
Compare Coef(s^2) => 1=A+C => A=-1

Thus we have:

F(s) = -1/s + 2/s^2 +2/(s+1)

Now if we take Inverse Laplace Transformations we have:

ℒ^(-1) \ {F(s) } = ℒ^(-1) \ {-1/s} + ℒ^(-1) \ {2/s^2} +ℒ^(-1) \ {2/(s+1)}

Again using the known property of the LT (inverses):

f(x) = -1 + 2x +2e^(-x)

Hence the complete solution is:

f(x) = 2e^(-x) + 2x -1