Solve the differential equation (2y-x)dy/dx=2x+y(2yx)dydx=2x+y where y=3y=3 when x=2x=2?

2 Answers
Jul 12, 2017

See below.

Explanation:

Making y = lambda xy=λx we have

dy = x dlambda + lambda dxdy=xdλ+λdx and substituting

x dlambda + lambda dx = ((2+lambda)/(2lambda-1))dxxdλ+λdx=(2+λ2λ1)dx or

x dlambda = (((2+lambda)/(2lambda-1))-lambda)dxxdλ=((2+λ2λ1)λ)dx or

dx/x = -1/2(2lambda-1)/(lambda^2-lambda-1)dydxx=122λ1λ2λ1dy and after integrating both sides

log x = -1/2log(2(1+lambda-lambda^2))+Clogx=12log(2(1+λλ2))+C or

x = C_0/sqrt(2(1+lambda-lambda^2))x=C02(1+λλ2) or

1/2(C_0/x)^2=1+lambda-lambda^212(C0x)2=1+λλ2 and solving for lambdaλ

lambda = (x^2 pm sqrt[ 5 x^4-2 C_0^2 x^2])/(2 x^2) = y/xλ=x2±5x42C20x22x2=yx and finally

y = x( (x^2 pm sqrt[ 5 x^4-2 C_0^2 x^2])/(2 x^2) ) =y=x⎜ ⎜x2±5x42C20x22x2⎟ ⎟=

and simplifying

y = 1/2(xpmsqrt[ 5 x^2-2 C_0^2])y=12(x±5x22C20)

For initial conditions we have

3=1/2(2pm sqrt(20-2C_0^2))3=12(2±202C20) we have

C_0 = pm sqrt(2)C0=±2 and finally

y = 1/2(x pm sqrt(5x^2-4))y=12(x±5x24)

Jul 12, 2017

y^2-xy-x^2+1=0y2xyx2+1=0

Explanation:

We have:

(2y-x)dy/dx=2x+y (2yx)dydx=2x+y

We can rearrange this Differential Equation as follows:

dy/dx = (2x+y)/(2y-x) dydx=2x+y2yx
" " = (2x+y)/(2y-x) * (1/x)/(1/x) =2x+y2yx1x1x
" " = (2+(y/x))/(2(y/x)-1) =2+(yx)2(yx)1

So Let us try a substitution, Let:

v = y/x => y=vxv=yxy=vx

Then:

dy/dx = v + x(dv)/dx dydx=v+xdvdx

And substituting into the above DE, to eliminate yy:

v + x(dv)/dx = (2+v)/(2v-1) v+xdvdx=2+v2v1

:. x(dv)/dx = (2+v)/(2v-1) - v
:. " " = {(2+v) - v(2v-1)}/(2v-1)
:. " " = {2+v - 2v^2+v}/(2v-1)
:. " " = {2+2v - 2v^2}/(2v-1)
:. " " = -(2(v^2-v-1))/(2v-1)

:. (2v-1)/(v^2-v-1) \ (dv)/dx = -2/x

This is now a separable DIfferential Equation, and so "separating the variables" gives us:

int \ (2v-1)/(v^2-v-1) \ dv = - int \ 2/x \ dx

This is now a trivial integration problem, thus:

ln(v^2-v-1) = -2lnx + lnA
" " = lnA/x^2

:. v^2-v-1 = A/x^2

And restoring the substitution we get:

(y/x)^2-(y/x)-1 = A/x^2

Using y=3 when x=2:

9/4-3/2-1 = A/4 => A = -1

Thus:

(y/x)^2-(y/x)-1 = -1/x^2
:. y^2-xy-x^2=-1
:. y^2-xy-x^2+1=0