Question #d76e9

2 Answers

00

Explanation:

sin2x=1sin2x=1, 2x=pi/22x=π2 or x=pi/4x=π4

Hence

u=cos(8*pi/4)+2cos(6*pi/4)+cos(4*pi/4)u=cos(8π4)+2cos(6π4)+cos(4π4)

=cos(2pi)+2cos((3pi)/2)+cos(pi)=cos(2π)+2cos(3π2)+cos(π)

=1+2*0-1=1+201

=0=0

1) I found xx for sin2x=1sin2x=1 condition.

2) I substituted to x=pi/4x=π4.

Jul 24, 2017

00.

Explanation:

sin(2x)=1sin(2x)=1.

In general, equations of the form sin(theta)=Ksin(θ)=K and solved by theta = arcsin(K)+2npiθ=arcsin(K)+2nπ and pi-theta=arcsin(K)+2npiπθ=arcsin(K)+2nπ, n in ZZ, because of the periodicity of the sine function#.

Note that arcsin(1)=pi/2. This means that if sin(2x)=1,

2x=pi/2+2npi,
x=pi/4+npi.

pi-2x=pi/2+2npi,
2x=pi/2-2npi,
x=pi/4-npi.

As n in ZZ these solution sets are identical.
So if sin(2x)=1 then x=pi/4+npi, n in ZZ.

Then

cos(8(pi/4+npi)+2cos(6(pi/4+npi))+cos(4(pi/4+npi)),
cos(2pi+4(2npi))+2cos((3pi)/2+3(2npi))+cos(pi+2(2npi)).

Multiplies of the periodicity can be removed and the values substituted to give,

1+2*0-1=0.

In this case, it was safe to assume sin(2x)=1 => x=pi/4. This will not always be the case! So it is good to solve more generally.