What is the second derivative of f(cosx)f(cosx) when x=pi/2x=π2 where f(x)=sinxf(x)=sinx?

2 Answers
Jul 17, 2017

00

Explanation:

We have: f(x) = sin(x)f(x)=sin(x)

Rightarrow f(cos(x)) = sin(cos(x))f(cos(x))=sin(cos(x))

Let's differentiate this function:

Rightarrow f'(cos(x)) = frac(d)(dx)(sin(cos(x)))

We can differentiate this using the chain rule.

Let u = cos(x) Rightarrow u' = - sin(x) and v = sin(u) Rightarrow v' = cos(u):

Rightarrow f'(cos(x)) = u' cdot v'

Rightarrow f'(cos(x)) = - sin(x) cdot cos(u)

Rightarrow f'(cos(x)) = - sin(x) cos(u)

Replace u with cos(x):

Rightarrow f'(cos(x)) = - sin(x) cos(cos(x))

We need to find the second derivative, so let's differentiate this one more time:

Rightarrow f''(cos(x)) = frac(d)(dx)(- sin(x) cos(cos(x)))

Rightarrow f''(cos(x)) = - frac(d)(dx)(sin(x) cos(cos(x)))

We can differentiate this using a combination of the product rule and the chain rule:

Rightarrow f''(cos(x)) = sin(x) cdot frac(d)(dx)(cos(cos(x))) + cos(cos(x)) cdot frac(d)(dx)(sin(x))

Let u = cos(x) Rightarrow u' = - sin(x) and v = cos(u) Rightarrow v' = - sin(u):

Rightarrow f''(cos(x)) = sin(x) cdot u' cdot v' + cos(cos(x)) cdot cos(x)

Rightarrow f''(cos(x)) = sin(x) cdot (- sin(x)) cdot (- sin(u)) + cos(x) cos(cos(x))

Rightarrow f''(cos(x)) = sin^(2)(x) cdot sin(u) + cos(x) cos(cos(x))

Replace u with cos(x):

Rightarrow f''(cos(x)) = sin^(2)(x) cdot sin(cos(x)) + cos(x) cos(cos(x))

therefore f''(cos(x)) = sin^(2)(x) sin(cos(x)) + cos(x) cos(cos(x))

Finally, let's evaluate f''(cos(x)) at x = frac(pi)(2):

Rightarrow f''(cos(frac(pi)(2))) = sin^(2)(frac(pi)(2)) sin(cos(frac(pi)(2))) + cos(frac(pi)(2)) cos(cos(frac(pi)(2)))

Rightarrow f''(cos(frac(pi)(2))) = 1 cdot sin(0) + 0 cdot cos(0)

Rightarrow f''(cos(frac(pi)(2))) = 1 cdot 0 + 0 cdot 1

Rightarrow f''(cos(frac(pi)(2))) = 0 + 0

therefore f''(cos(frac(pi)(2))) = 0

Therefore, the final answer is 0.

Jul 17, 2017

[f''(cos(x))]_(x=pi/2) = 0

Explanation:

We have:

f(x)=sinx

And we want the second derivative of f(cosx)

Let:

g(x) = f(cosx) = sin(cosx)

Then by the chain rule we have:

g'(x) = d/dx sin(cosx)
" " = (cos(cosx))(-sinx)
" " = -sinx \ cos(cosx)

And for the second derivative we also need the product rule'

g''(x) = d/dx -sinx \ cos(cosx)
" " = - \ d/dx sinx \ cos(cosx)
" " = - { (sinx)(d/dx cos(cosx)) + (d/dx sinx)(cos(cosx) }

" " = - { (sinx)(-sinx(cosx)(-sinx) + (cosx)(cos(cosx) }

" " = - sin^2x \ sinx(cosx) - cosx \ cos(cosx)

And with x=pi/2 we have:

g(pi/2) = - sin^2(pi/2) \ sinx(cos(pi/2)) - cos(pi/2) \ cos(cos(pi/2))

And as sin(pi/2)=1, cos(pi/2)=0 and sin0=0 we have

g(pi/2) = - (1) \ sin(0) - (0) \ cos(0)
" " = - (1) \ (0)
" " = 0