if v=1148sqrt(p)v=1148√p where pp is a function of tt then find (dv)/dtdvdt when p=44.0p=44.0 and dp/dt=0.307dpdt=0.307?
1 Answer
[(dv)/(dt)]_(p=44.0) = 26.3 \ ft (s^(-2)) to three significant figures
Explanation:
We have:
v = 1148sqrt(p)
\ \ = 1148p^(1/2)
Differentiating wrt
(dv)/(dp) = 1/2(1148)p^(-1/2)
" " = 574/sqrt(p)
We are also give that:
(dp)/dt =0.307
By the chain rule we have:
(dv)/(dt) = (dv)/(dp) * (dp)/(dt)
" " = 574/sqrt(p) * 0.307
" " = 176.218/sqrt(p)
So when
[(dv)/(dt)]_(p=44.0) = 176.218/sqrt(44)
" " = 26.565863 ... ft \ s^(-2)