if v=1148sqrt(p)v=1148p where pp is a function of tt then find (dv)/dtdvdt when p=44.0p=44.0 and dp/dt=0.307dpdt=0.307?

1 Answer
Jul 21, 2017

[(dv)/(dt)]_(p=44.0) = 26.3 \ ft (s^(-2)) to three significant figures

Explanation:

We have:

v = 1148sqrt(p)
\ \ = 1148p^(1/2)

Differentiating wrt p we get:

(dv)/(dp) = 1/2(1148)p^(-1/2)
" " = 574/sqrt(p)

We are also give that:

(dp)/dt =0.307

By the chain rule we have:

(dv)/(dt) = (dv)/(dp) * (dp)/(dt)
" " = 574/sqrt(p) * 0.307
" " = 176.218/sqrt(p)

So when p=44.0 we have:

[(dv)/(dt)]_(p=44.0) = 176.218/sqrt(44)
" " = 26.565863 ... ft \ s^(-2)