What is the area bounded by the the inside of polar curve 1+cos theta1+cosθ and outside the polar curve r(1+cos theta)=1r(1+cosθ)=1?
1 Answer
"Area" = (3pi)/4+ 4/3 Area=3π4+43
Explanation:
If we plot the polar curve, and shadethe area sought:
We observe that the points of intersection are:
theta = -pi/2θ=−π2 andtheta=pi/2θ=π2
We calculate area in polar coordinates using :
A = 1/2 \ int_alpha^beta \ r^2 \ d theta
Thus, the enclosed area is:
A = 1/2 \ int_(-pi/2)^(pi/2) \ (1+cos theta)^2 - (1/(1+cos theta))^2 \ d theta
:. 2A = int_(-pi/2)^(pi/2) \ (1+cos theta)^2 \ d theta - int_(-pi/2)^(pi/2) (1/(1+cos theta))^2 \ d theta
Consider the first integral;:
I_1= int_(-pi/2)^(pi/2) \ (1+cos theta)^2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) \ 1+ 2cos theta + cos^2 theta \ d theta
\ \ \ = int_(-pi/2)^(pi/2) \ 1+ 2cos theta + (1+cos 2theta)/2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) \ 3/2+ 2cos theta + (cos 2theta)/2 \ d theta
\ \ \ = [(3theta)/2+ 2sin theta + (sin 2theta)/4]_(-pi/2)^(pi/2) \
\ \ \ = ((3(pi/2))/2+ 2sin (pi/2)+ (sin (2pi))/4) - ((3(-pi/2))/2+ 2sin (-pi/2)+ (sin (-2pi))/4)
\ \ \ = ((3pi)/4+ 2+ 0) - (-(3pi)/4-2-0)
\ \ \ = (3pi)/2+ 4
And, now the second integral:
I_2 = int_(-pi/2)^(pi/2) (1/(1+cos theta))^2 \ d theta
For which, we perform, a tangent half-angle substitution:
u =tan(theta/2) => (du)/(d theta) = 1/2sec^2(theta/2)
When:
theta = { (pi/2), (-pi/2) :} => u = { (1), (-1) :}
And we can manipulate the integral and perform the substitution, to get:
I_2 = int_(-pi/2)^(pi/2) 1/( (1-tan^2(theta/2))/(1+tan^2(theta/2))+1)^2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) 1/( (1-tan^2(theta/2))/(sec^2(theta/2))+1)^2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) 1/ ((1-tan^2(theta/2)+1+tan^2(theta/2))/(1+tan^2(theta/2)))^2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) 1/ ((2)/(sec^2(theta/2)))^2 \ d theta
\ \ \ = int_(-pi/2)^(pi/2) 1/ ((2)/(sec^2(theta/2)))^2 \ d theta
\ \ \ = 1/4 \ int_(-pi/2)^(pi/2) sec^2 (theta/2) sec^2 (theta/2) \ d theta
\ \ \ = 1/2 \ int_(-pi/2)^(pi/2) (1+tan^2 (theta/2)) \ 1/2sec^2 (theta/2) \ d theta
\ \ \ = 1/2 \ int_(-1)^(1) 1+u^2 \ du
\ \ \ = 1/2 [u+u^3/3]_(-1)^(1)
\ \ \ = 1/2 {(1+1/3) - (-1-1/3)}
\ \ \ = 4/3
Combining both results, we get:
2A = I_1 + I_2
\ \ \ \ \ = (3pi)/2+ 4 + 4/3
\ \ \ \ \ = (3pi)/2+ 16/3
Hence:
A = (3pi)/4+ 4/3