How do you calculate int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx ?

1 Answer
Jan 23, 2018

int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx=ln(x)^ln(x)+C

Explanation:

\ \ \ \ \ \ int\ ln(x)^ln(x)(1/x+ln(ln(x))/x)\ dx

Let's first substitute u=ln(x) and du=dx/x:
=int\ u^u(1+ln(u))\ du
=int\ e^(u ln(u))(1+ln(u))\ du

Substitute again with v=u ln(u) and dv=(1+ln(u))\ du:
=int\ e^v\ dv
=e^v+C

Substitute back v=u ln(u):
=e^(u ln(u))+C
=u^u+C

Substitute back u=ln(x):
=ln(x)^ln(x)+C