Question #c71e4

1 Answer
Aug 7, 2017

int_(-1)^1 sqrt(2-x^2)-x^2dx = (2+3pi)/6

Explanation:

Using the linearity of the integral:

int_(-1)^1 sqrt(2-x^2)-x^2dx = int_(-1)^1 sqrt(2-x^2)dx - int_(-1)^1 x^2dx

The second integral can be solved directly:

int_(-1)^1 x^2dx = [x^3/3]_(-1)^1 = 2/3

For the first, solve the indefinite integral substituting x= sqrt2 sint. As the integrand is defined only for x in [-sqrt2,sqrt2] t varies in [-pi/2,pi/2]

int sqrt(2-x^2)dx = int sqrt(2-2sin^2t) d(sqrt2sint)

int sqrt(2-x^2)dx = 2int sqrt(1-sin^2t)costdt

As for t in [-pi/2,pi/2] cost > 0 then: sqrt(1-sin^2t) = cost, so:

int sqrt(2-x^2)dx = 2 int cos^2tdt

and using the trigonometric identity: 2cos^2alpha = (1+cos 2 alpha)

int sqrt(2-x^2)dx = int (1+cos 2t) dt = t +(sin 2t)/2 = t+sintcost

undoing the substitution:

t = arcsin(x/sqrt2)

sint = x/sqrt2

cost = sqrt(1-(x/sqrt2)^2)

int sqrt(2-x^2)dx =arcsin(x/sqrt2)+x/sqrt2sqrt(1-(x/sqrt2)^2)

int sqrt(2-x^2)dx =arcsin(x/sqrt2)+(xsqrt(2-x^2))/2

So:

int_(-1)^1 sqrt(2-x^2)dx =arcsin(1/sqrt2)+(sqrt(2-1))/2 - arcsin(-1/sqrt2)-((-1)sqrt(2-1))/2

int_(-1)^1 sqrt(2-x^2)dx =pi/4+1/2 +pi/4+1/2 = 1+pi/2

And finally:

int_(-1)^1 sqrt(2-x^2)-x^2dx = 1+pi/2-2/3 = (2+3pi)/6