The series sum_(n=1)^oo x^n/10^n converges for |x| lt beta, find beta?

1 Answer
Aug 12, 2017

beta=10

Explanation:

We can apply d'Alembert's ratio test:

Suppose that;

S=sum_(n=1)^oo a_n \ \ , and \ \ L=lim_(n rarr oo) |a_(n+1)/a_n|

Then

if L < 1 then the series converges absolutely;
if L > 1 then the series is divergent;
if L = 1 or the limit fails to exist the test is inconclusive.

Our series is;

S = sum_(n=1)^oo a_n with a_n=x^n/10^n

So our test limit is:

L = lim_(n rarr oo) | ( x^(n+1)/10^(n+1) ) / ( x^n/10^n) |
\ \ \ = lim_(n rarr oo) | ( x^(n+1)/10^(n+1) ) * ( 10^n/x^n ) |
\ \ \ = lim_(n rarr oo) | ( (x x^n)/(10 * 10^n) ) * ( 10^n/x^n ) |
\ \ \ = lim_(n rarr oo) | x/10 |
\ \ \ = | x/10 |

Comparing with the definition of the question, we can conclude that the series converges if L lt 1

| x/10 | lt 1 => |x| lt 10

Similarly, the series diverges if L gt 1

| x/10 | gt 1 => |x| gt 10

Hence, beta=10